Wat'saDiqter, Andwhycbl careanway?

I guess to start at the beginning, one thing to get out of the way is that a Diopter is $\mathcal{N O T}$ a little glass screw-in lens that looks like a bulging skylight filter. That's a close-uplens, which happens to have its power marked on it in Diopters.
\mathcal{A} Diopter, in itself, is a number; or perfiaps more precisely, a formula, which tells you the power, or focallength, of a lens. Specifically, one diopter is the reciprocal of one meter of focal length \qquad or,

$$
[1 \div(\text { focallength in meters })]
$$

The first thing that youcando with this information is apply it to your little "diopter"close-up lenses and see what they really are:

- Your +1 lens is 1 diopter, or $1 / 1$ meters, or $1,000 \mathrm{~mm}$ focal length
- Your +2 lens is 2 diopters, or $1 / 2$ meters, or 500 mm focal length
- And your +4 lens is 4 diopters, or $1 / 4$ meters, or 250 mm focallength.

This in turn will tell you what the farthest distance is that you can focus through this lens: in each case, with your prime * lens at infinity, you will focus on an object one focallength from the
close-up attacfiment - so you can focus out to $1,000,500$ or 250 mm respectively through these three attachments.

But you can do more than that: you can also use the Diopter formula to tell you what the CLOSEST distance is that you can focus through the attachment. Youcando this because, just as you can use the formula to find the focallength of your close-up attachment, you can also use it to find the power in Diopters of your cameralens -and once you've done that, you can do some aritfmetic.

Let's say, for instance, that you want to use a+1 attachment on a 50 mm lens that normally focuses from infinity to 0.5 meters. At infinity, the optical distance from the lens to the film is equal to its focallength - in this case 50 mm , or 0.05 meters, or 20 diopters. The focus movement that brings the lens down to 0.5 meters is equivalent to ($1 / 0.5$), or 2 Diopters of added power. If we now add another +1 close-up lens to the system, we fave a total of 3 Diopters of focusing power when the lens is set at its closest focus limit. So fowfar is 3 Diopters? The Diopter formula gives the answer:

$$
3 \text { Diopters }=1 / 3 \text { meter }=333 \mathrm{~mm} \text { (a6out } 13 \text { inches) }
$$

So now youknow that your 50 mm lens will focus from 0.33 to 1.0 meter when you fave $a+1$ lens on it. You can run the same numbers for the +2 , the +4 and multiple combinations ($j u s t$ add diopters) so that youknow in advance which lens to pickfor a given subject distance.

Bt Vatt!! TheresMbe!

Did younotice that I said the focus movement of the lens is "equivalent to 2 Diopters of power" because it makes it focus down to $1 / 2$ meter? But we didn't actually add any power to the lens, did we? We just moved it forward a few millime ters. So how does that work, and what does it have to do with Diopters?

Well, you may have also noticed that I referred to the "optical distance from the lens to the film"in terms of Diopters. That's odd. But it's useful. When we moved the lens forward, we didn't increase the number of diopters in the lens ... 6 ut we did $\mathcal{D E C R E A S} E$ the number of diopters in the distance from the lens to the film. When the distance from the lens to the film is equal to the focallength of the lens, then it's focused at infinity ... 6 ut when the distance is GREATER than the focallength, the lens will focus CLOS ER than infinity - and the distances from lens to subject and from lens to film can both be figured out from the Diopter formula. So let's go back to our 50 mm lens.

The lens itself has 20 diopters of power, that's not going to change. So if we want it to focus down to 0.5 meter (2 Diopters) by increasing its distance from the film, then the distance we re looking for has to be (20-2), or 18 Diopters. So back to the formula, 18 Diopters $=(1 / 18)$ meters, or 55.55 millimeters. Subtract this from the 50 mm of the focallength of the lens, and we now know that the lens has to have 5.55 millime ters of focus travel to reach a minimum focus of 0.5 meters.

You can use this formula for any problem involving lens powers, focus error, positive (or negative) power attachments, bellows extension requirements... all kinds of stuff!

Ever wonder why a 400 mm glass supertele photo lens won't focus any closer than 8 meters (about 27 feet)? Well, with alens of 2.5 Diopters power, to get to 8 meters (. 125 Diopters distance) we need a distance from the film of (2.5-.125), or 2.375 Diopters; this is a distance of (1/2.375), or 421mm-meaning that the lens has a focus travel of 21 mm . That's quite a lot of travel in a focus thread.

Now, you're probably already running for your calipers to prove this wrong, so I'll add a caveat: this simple formula for focal length, focus thread travel and subject distance doesn't workfor ALL lenses. It works for all unit-focusing lenses, such as you would find on a $\mathcal{T} \mathcal{L}$, an interchange able-lens rangefinder and most single-focal-length ${ }^{*}$ S LRlenses. A notable case where it does $\mathfrak{N O T}$ apply is in front-cell-focusing lenses... in these, when you turn the focus ring you actually are changing the focallength of the lens, making it shorter and increasing its Diopter power, rather than changing its distance from the film. The formula will still give you the correct answers for your focus limits with close. up attachments, 6ut not for the focus thread travel. Similarly, any lens which has elements that do not move during focusing some telephotos, mirror lenses and zooms, and anything with internal focusing - will not conform to this formula in terms of the focus movement of the lens.

OKay, one last example. Let's say you removed the lens mount from your Kiev $4 \mathcal{A}$ (don't actually try this), and the re we re a bunch of shims under it, and the little buggers are a pain in the patoot to get back in place. How far will your focus be off if you
put it backtogether without the shims? We've got a 50 mm lens, and the shims are . 01 " (.25mm) thick.

Without the shims, the 50 mm lens will be 49.75 mm from the film. $\mathcal{T h}$ is error is $(1 / .04975)-(1 / 50)$, or 0.10 Diopters. And, going 6ack the other direction, 0.1 Diopters is (1/0.1) or 10 meters, about 33 feet. The lens will actually be focused at infinity when the distance scale indicates 10 meters. According to the $\mathcal{D O} \mathcal{F}$ scale on the Kiev, this will come within the depth of field of the lens only if it's stopped down to $f / 5.6$ or smaller.... and $\mathcal{D O} \mathcal{F}$ scales tend to be on the liberalside, so youll probably notice the error in prints even at smaller apertures than that.

With this one little formula, you can determine not only whe ther your camera is off, but how far it's off, and how much you have to add or subtract to correct it, and how close to perfect is close enough for your purposes.

* - totally off the subject, but you may fave noticed my reference to a "prime" lens in one place and to a"single-focallength" lens in another. Contrary to Digital Era usage, these terms are $\mathcal{N} O \mathcal{T}$ synonymous. A "single-focal-lengtf"lens is a lens that has only one focallength; i.e., not a zoom lens. A "prime" lens is the imaging lens that is attached to a camera, without additional attachments - as opposed to an "auxiliary" lens, whe ther a close-up lens or a wide-angle, tele photo or fisheye converter, that screws or slips onto the front of the prime lens to change its characteristics. The only explanation for the recent use of the term "prime" to refer to non-zoom lenses is that "non-zoom" requires too many Keystrokes (and that the writers have not been around long enough to know what the term "prime lens" actually means).

